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Problems 31-36 afford an opportunity for working with the EM fields generated by a relativistic point
particle.

31.
At t = 0 at the origin of a spherical polar coordi-
nate system in the lab, a point particle of charge
q has velocity βc directed along the ẑ (north po-
lar) axis. It has been moving with that constant
velocity for a long time.
(a.)
Starting with the Coulomb field in the particle’s
rest frame, and using the rules for relativis-
tic transformation of EM fields, show that the
electric field observed in the lab at t = 0 and
�r = (r, θ, φ) is

4πε0 �E = r̂
q

r2

γ

(γ2 cos2 θ + sin2 θ)3/2
,

where as usual γ = 1/
√
1− β2.

(b.)
Show that this result is equivalent to Griffiths
Eq. (10.68).

32.
Griffiths Problem 10.9(b).

33.
The general expression for the electromagnetic
fields arising from a point particle of charge q

moving with velocity �βc and acceleration �̇
βc is

�E = �Ev + �Ea with

�Ev =
q

4πε0

{ 1
R2

(R̂ − �β)(1− β2)

(1− R̂ · �β)3

}
ret

c �B =
{
R̂ × �E

}
ret

,

where �Ev is the velocity field, and the accelera-
tion field �Ea is given in a later problem. Here �r is
a vector from the origin to the observer, �w(t) is a
vector from the origin to the particle, �R ≡ �r− �w,
and the subscript “ret” means that quantities
are to be evaluated at time tret = t − R/c.

Assume that �β lies in the z direction and is a
constant, so that the acceleration field vanishes.

As usual θ = cos−1 ẑ · r̂. Choose the origin of
coordinates to be the position of the particle at
t = 0. At that time, show that...
(a.)

−ctret = γ
(
γβz +

√
(γβz)2 + r2

)
;

(b.)

R(1− R̂ · �β) = r

√
1− β2 sin2 θ ;

(c.)
�r = R(R̂ − �β) .

34.
Under the conditions of the previous problem,
and using the tools developed there, show that
�Ev is equivalent to Griffiths Eq. (10.68).

35.
Liénard’s equation for the Poynting vector

�Sa =
1
µ0

�Ea × �Ba

arising from acceleration of a point particle of
charge q is

�Sa = (
q

4πε0
)2

ε0
c

{ R̂
R2

[ R̂ × [(R̂ − �β)× �̇
β]

(1− R̂ · �β)3
]2}

ret
.

(a.)
Show that Liénard’s equation follows directly
from the electric and magnetic fields arising
from acceleration of a point particle, using the
acceleration fields

�Ea =
q

4πε0

1
c

{ 1
R

R̂ × [(R̂ − �β)× �̇
β]

(1− R̂ · �β)3

}
ret

c �Ba =
{
R̂ × �Ea

}
ret

.
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(b.)
Suppose that the particle is in uniform motion
around a circle of radius b in the plane z = 0
centered at the origin. The motion is ultrarela-
tivistic, i.e. (1 − β2)−1/2 � 1. To lowest order,
calculate the radiated power per unit area ob-
served at (0, 0, z), where z � b.
(c.)
Is ẑ a direction in which the power radiated per
unit solid angle is near the maximum for this
motion? Explain.

36.
As an intermediate step in the derivation of the
velocity and acceleration fields �Ev and �Ea, in
class we derived the expression

�E =
q

4πε0

{ 1

1− R̂ · �β

[ R̂
R2

+
d

c dt

R̂ − �β

R(1− R̂ · �β)

]}
ret

where the subscript “ret” means that the differ-
entiation should be done first, and afterward all
time-dependent quantities should be evaluated
at time tret = t − R/c.

Define �̇
β ≡ d�β/dt. Use two relations worked out

in class:
dR
c dt

= −R̂ · �β

dR̂
c dt

=
R̂ × (R̂ × �β)

R
.

With these tools, finish the derivation to obtain
�Ev (as given in an earlier problem) and �Ea (as
given in the previous problem).
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